第一部分《数与式》知识点
第二部分《方程与不等式》知识点 第三部分《函数与图象》知识点
①各象限内点的特点:②坐标轴上点的特点x轴:纵坐标y=0;y轴:横坐标x=0.③平行于x轴,y轴的线段长度的求法(大坐标减小坐标)直角坐标系④不共线的几点围成的多边形的面积求法(割补法)关于x轴对称(x相同,y相反)⑤对称点的坐标关于y轴对称(x相反,y相同)关于原点O对称(x,y都相反)一、三象限角平分线:y=x正比例函数:y=kx(k≠0)(一点求解析式)二、四象限角平分线:y=-x函数表达式一次函数:y=kx+b(k≠0)(两点求解析式)增减性:y=kx与y=kx+b增减性一样,k>0时,x增大y增大;k<0,x增大y减小.一次函数平移性:y=kx+b可由y=kx上下平移而来;若y=k1x+b1与y=k2x+b2平行,则k1k2,b1≠b2.垂直性: 若y=kx+b与y=kx+b垂直,则kk1.112212求交点:(联立函数表达式解方程组)正负性:观察图像y>0与y<0时,x的取值范围(图像在x轴上方或下方时,x的取值范围)k表达式:y(k≠0)(一点求解析式)x①区域性:k>0时,图像在一、三象限;k<0时,图像在二、四象限.k>0在每个象限内,y随x的增大而减小;②增减性k<0在每个象限内,y随x的增大而减小.反比例函数性质③恒值性:(图形面积与k值有关)④对称性:既是轴对称图形,又是中心对称图形.函数求交点:(联立函数表达式解方程组求交点坐标,还可由图像比较函数的大小)①一般式:y=ax2bxc,其中(a0),2(k,h)为抛物线顶点坐标;表达式②顶点式:y=a(xk)h,其中(a0),③交点式:y=a(xx)(xx),其中(a0),x、x是函数图象与x轴交点的横坐标;1212①开口方向与大小:a>0向上,a<0向下;a越大,开口越小;a越小,开口越小.②对称性:对称轴直线x=-b2aa>0,在对称轴左侧,x增大y减小;在对称轴右侧,x增大y增大;③增减性性质a<0,在对称轴左侧,x增大y增大;在对称轴右侧,x增大y减小;2④顶点坐标:(-b,4acb)二次函数2a4a22b4acbb4acb⑤最值:当a>0时,x=-,y最小值=;a<0时,x=-,y最大值=.2a4a2a4a示意图:画示意图五要素(开口方向、顶点、对称轴、与x、y交点坐标)a与c:开口方向确定a的符号,抛物线与y轴交点纵坐标确定c的值;b的符号:b的符号由a与对称轴位置有关:左同右异.符号判断Δ=b24ac:Δ>0与x轴有两个交点;Δ=0与x轴有两个交点;Δ<0与x轴无交点.abc:当x=1时,y=a+b+c的值.abc:当x=-1时,y=a-b+c的值.①求函数表达式:第四函数应用②求交点坐标:③求围成的图形的面积(巧设坐标):④比较函数的大小.部分《图形与几何》知识要点
点在圆外:d>r点与圆的三种位置关系点在圆上:d=r点在圆内:d<r弓形计算:(弦、弦心距、半径、拱高)之间的关系圆的轴对称性定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧垂径定理推论:平分弦(不是直径)的直径垂直于弦,并且平分线所对的弧在同圆或等圆中,两条弧、两条弦、两个圆心角、两个圆周角、五组量的关系:两条弦心距中有一组量相等,则其余的各组两也分别相等.同弧所对的圆周角是它所对圆心角的一半;圆的中心对称性圆周角与圆心角半圆(或直径)所对的圆周角是900;900的圆周角所对的弦是直径,所对的弧是半圆.相交线定理:圆中两弦AB、CD相交于P点,则PAPAPCPD.圆中两条平行弦所夹的弧相等.相离:d>r直线和圆的三种位置关系相切:d=r(距离法)相交:d<r圆性质:圆的切线垂直于过切点的直径(或半径)圆的切线直线和圆的位置关系判定:经过半径的外端且垂直于这条半径的直线是圆的切线.弦切角:弦切角等于它所夹的弧对的圆周角切线长定理:如图,PA=PB,PO平分∠APBA 2切割线定理:如图,PAPCPD..O 外心与内心:P C D B 相离:外离(d>R+r),内含(d<R-r)圆和圆的位置关系相切:外切(d=R+r),内切(d=R-r)相交:R-r<d<R+r)nn弧长公式:l2rr弧长360180扇形面积公式:Snr21lr弧长3602圆的有关计算1圆锥的侧面积:S2rlrl(r为底面圆的半径,l为母线)侧22圆锥的全面积:Srrl全
第五部分《图形的变化》知识点
①轴对称指两个图形之间的关系,它们全等②对应点的连线段被对称轴垂直平分轴对称(折叠)③对应线段所在的直线相交于对称轴上一点(或平行)轴对称④图形折叠后常用勾股定理求线段长①指一个图形轴对称图形②轴对称图形被对称轴分成的两部分全等①平移前后两个图形全等②平移前后对应点的连线段相等且平行(或共线)平 移③平移前后的对应角相等,对应线段相等且平行(或共线)④平移的两个要素:平移方向、平移距离①旋转前后的两个图形全等②旋转前后对应点与旋转中心的连线段相等,且它们的夹角等于旋转角旋 转③旋转前后对应角相等,对应线段相等④旋转的三要素:旋转中心、旋转方向、旋转角①大小、比例要适中视图的画法②实线、虚线要画清平行投影:平行光线下的投影,物体平行影子平行或共线视图与投影投影中心投影:点光源射出的光线下的投影,影子不平行视点、视线、盲区投影的计算:画好图形,相似三角形性质的应用ac基本性质:adbc图形的变化bdacabcd比例的性质合比性质:bdbdacmab...m等比性质:...kk,(条件bd...n≠0)bdnbd...n2黄金分割:线段AB被点C分成AC、BC两线段(AC>BC),满足AC=BCAB, 则点C为AB的一个黄金分割点性质:相似多边形的对应边成比例、对应角相等相似多边形判定:全部的对应边成比例、对应角相等①对应角相等、对应边成比例性质②对应线段(中线、高、角平分线、周长)的比等于相似比相似形③面积的比等于相似比的平方①有两个角相等的两个三角形相似相似图形②两边对应成比例且夹角相等的两个三角形相似相似三角形判定③三边对应成比例的两个三角形相似④有一条直角边与斜边对应成比例的两个直角三角形相似射影定理:在Rt△ABC中,∠C900,CD⊥AB,则AC2=ADAB, BC2=BDAB,CD2=ADBD(如图)C ①位似图形是一种特殊的相似图形,具有相似图形的一切性质位似图形②位似图形对应点所确定的直线过位似中心 ③通过位似可以将图形放大或缩小BA D
第六部分《统计与概率》知识要点
因篇幅问题不能全部显示,请点此查看更多更全内容