发布网友 发布时间:2022-04-23 01:00
共4个回答
热心网友 时间:2023-10-09 16:52
数据分析要学习Python、R、SAS等编程工具;对数据仓库需要了解可以去九道门做些实验项目;如果你觉得还是难,那就采用最基础的学习路径,直接买MYSQL关系型数据库的书看,随便到网上去找个免费的MYSQL课程听;分布式存储HDOOP需要简单了解;云计算的技术作为了解就可以了;数据可视化不是很难,如果不要求特别美工的话,大家先理解图表,再研究研究仪表板,阿里云的Quich BI及DataV,百度的echarts都不错,主要是展示的业务结构需要规划;大数据技术:这个相对来说有些难度,如果是学数学统计类专业小伙伴就非常有优势了,其他专业的小伙伴也不用担心,毕竟工作后还可以继续学习,在工作中用的比较多的是聚类、关联、决策树、线性回归等,如果你不去做模型和算法工程师那么只需要会用就可以了,实在不行有专业的工具让我们用,阿里云的机器学习PAN是可以直接出结果的工具。可以到九道门商业数据分析实训官网上去看一些案例,自己做做训练。如果自学的小伙伴觉得很难坚持,那就只能去报班了,如果要成为大数据分析师的话就要时间沉定,或者让老师带你,像我就是进到决明后由赵强老师带了半年,现在基本上已经能熟练的搞这一套了。
热心网友 时间:2023-10-09 16:52
数据分析师的主要工作是从公司现有数据中提取有价值的信息,这个价值信息要依据公司行业而定发展前景不错,现在企业数据量越来越多,但一直没有加以利用,现在都越来越重视数据分析,但有经验的数据分析师却很少,所以人才缺口还很大
需要掌握的知识:
1、数据分析理论基础-统计学、概率论
2、数据分析工具-excel、SPSS、SAS/R
3、公司业务的理解(依公司而定)
数据分析师指的是不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。
热心网友 时间:2023-10-09 16:53
从职位薪水来看,数据分析行业的高薪主要分布在长三角、珠三角和京津地区。北京、上海和深圳的薪水位列第一方阵,均薪在10k+;杭州、宁波和广州位列第二方阵,均薪在9k+;其他沿海及内陆区域中心城市,如南京、重庆、苏州、无锡等位于第三方阵,均薪在8k左右。
从职位量来看,北京、上海、深圳和广州位列第一方阵,职位量在30000+,杭州、成都、南京和天津位列第二方阵,职位量在20000+,武汉、西安、郑州等区域中心或省会城市对数据分析职位的需求也相对较高,职位量在10000+。
从行业需求来看,互联网金融、O2O、数据服务、教育、电子商务、文化娱乐领域对数据分析师需求量相比其他行业更大。
不管是在企业还是社会,数据都已经开始扮演越来越重要的“角色”。在这种大势之下,数据分析思维已经不只是数据分析师的“专业”了,包括销售、市场、运营、策划、产品等等前端的职位都需要通过数据分析来帮助自己的工作,甚至连后台的财务、法务、人事等也开始需要通过数据分析来提升效率。可以这么说,如果你在企业之中工作,你未来会开始越来越多的和数据打交道,这个时候数据分析已经成为工作的必要条件。
这里给大家举几个例子:
现在的产品,由于销售渠道开始开始网络化,所以基本上每个产品在做客群划分、竞品分析、销售预测等等工作时都必须基于数据来进行建模并分析。以前那样只要写写产品分析书,画画产品原型,做做产品交互的“好日子”已经过去了。这么说吧,越来越多的公司里,如果产品不能拿数据出来支撑自己的工作,是基本上获取不到什么资源的支持。
再拿运营来说,更加离不开数据了。大到做一个活动,目标人群如何划分,不同人群的方案是什么,预计投入多少产出多少,这些都需要数据支持;小到一个营销话术,也需要切分不通人群进行对照实验来决定。可以说,现在不依靠数据分析的运营已经越来越少。
最后再举一个后台部门的例子。现在的HR在做人力规划时,从人员结构分析到配置策略分析再到成本分析,无论哪一项都需要使用到数据。除了本公司的人力数据外,还需要业务数据,竞对公司数据乃至于整个行业数据。通过大量数据的分析,可以更加精确的制定公司的人力资源战略。
热心网友 时间:2023-10-09 16:53
数据分析师的作用
越来越多的企业将选择拥有项目数据分析师资质的专业人士为他们的项目做出科学、合理的分析,以便正确决策项目;越来越多的风险投资机构把项目数据分析师所出具的项目数据分析报告作为其判断项目是否可行及是否值得投资的重要依据;越来越多的企业把项目数据分析师课程作为其中高管理层及决策层培训计划的重要内容;越来越多的有志之士把项目数据分析师培训内容作为其职业生涯发展中必备的知识体系。
编辑本段数据分析师的工作职责
数据分析师指的是不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。 互联网本身具有数字化和互动性的特征,这种属性特征给数据搜集、整理、研究带来了*性的突破。以往“原子世界”中数据分析师要花较高的成本(资金、资源和时间)获取支撑研究、分析的数据,数据的丰富性、全面性、连续性和及时性都比互联网时代差很多。在“原子世界”中,抽样调查是最经常采用的数据获取方式,主要原因就是大范围普查的成本太高——最典型的应用就是电视收视率。而在互联网时代,针对互联网行业的研究,在局部(例如某个网站或同类网站的集群)做到低成本、高效率的全样本数据采集是有可能实现的。同样,“原子世界”中的很多数据不具备连续性,而互联网世界中的数据却有可能做到连续更新,甚至实时——最典型的应用就是网站全样本、全天候数据统计和分析研究。 与传统的数据分析师相比,互联网时代的数据分析师面临的不是数据匮乏,而是数据过剩。因此,互联网时代的数据分析师必须学会借助技术手段进行高效的数据处理。更为重要的是,互联网时代的数据分析师要不断在数据研究的方*方面进行创新和突破。例如,结合传统的消费心理学理论,构建丰富的互联*息消费行为模型。 就行业而言,数据分析师的价值与此类似。就新闻出版行业而言,无论在任何时代,媒体运营者能否准确、详细和及时地了解受众状况和变化趋势,都是媒体成败的关键。数据分析师在这方面大有可为。 此外,对于新闻出版等内容产业来说,更为关键的是,数据分析师可以发挥内容消费者数据分析的职能,这是支撑新闻出版机构改善客户服务的关键职能。例如,收集内容消费者信息、形成内容消费者信息数据库、根据数据库的信息与内容消费者保持即时联系、传递产品和服务的信息、数据库的更新和维护。由此,数据分析师提供的数据还将成为定制产品、个性化服务的重要依据:借助先进的数据库技术,对内容资源进行深入挖掘和多次利用,提供个人偏好的内容服务,或借助数字印刷和出版技术,实现按需生产产品并交付出版印刷。
编辑本段数据分析师的要求
技能要求
1、大学本科以上,数理统计或数据挖掘专业方向 2、熟悉数据分析与数据挖掘理论 3、熟练使用各种数理统计、数据分析、数据挖掘工具软件 4、有电子邮件方面工作经验者优先 5、熟悉互联网应用技术知识、网络知识,了解互联网和邮件
其他要求
良好的沟通交流能力,文字语言表达能力,较好的逻辑分析能力; 具有的产品策划开发能力,项目管理,商务沟通能力; 强烈责任心,开放的性格,良好的沟通能力; 擅于协作,具备良好的团队合作精神; 能够在压力下开展工作;善于学习追问谢谢您的回答,请问第一句里面的“数据分析师资质”是个什么样的资质认证呢?