python中怎么把数据中inf转化为na

发布网友 发布时间:2022-04-23 03:13

我来回答

2个回答

懂视网 时间:2022-05-11 00:52

这篇文章主要介绍了关于Python中Inf与Nan的判断问题,文中介绍的很详细,对大家具有一定的参考价值,有需要的朋友们下面来一起看看吧。

大家都知道 在Python 中可以用如下方式表示正负无穷:

float("inf") # 正无穷
float("-inf") # 负无穷

利用 inf(infinite) 乘以 0 会得到 not-a-number(NaN) 。如果一个数超出 infinite,那就是一个 NaN(not a number)数。在 NaN 数中,它的 exponent 部分为可表达的最大值,即 FF(单精度)、7FF(双精度)和 7FFF(扩展双精度)。 NaN 数与 infinite 数的区别是:infinite 数的 significand 部分为 0 值(扩展双精度的 bit63 位为 1);而 NaN 数的 significand 部分不为 0 值。

我们先看看如下的代码:

>>> inf = float("inf")
>>> ninf = float("-inf")
>>> nan = float("nan")
>>> inf is inf
True
>>> ninf is ninf
True
>>> nan is nan
True
>>> inf == inf
True
>>> ninf == ninf
True
>>> nan == nan
False
>>> inf is float("inf")
False
>>> ninf is float("-inf")
False
>>> nan is float("nan")
False
>>> inf == float("inf")
True
>>> ninf == float("-inf")
True
>>> nan == float("nan")
False

如果你没有尝试过在 Python 中判断一个浮点数是否为 NaN,对以上的输出结果肯定会感到诧异。首先,对于正负无穷和 NaN 自身与自身用 is 操作,结果都是 True,这里好像没有什么问题;但是如果用 == 操作,结果却不一样了, NaN 这时变成了 False。如果分别用 float 重新定义一个变量来与它们再用 is 和 == 比较,结果仍然出人意料。出现这种情况的原因稍稍有些复杂,这里就不赘术了,感兴趣可以查阅相关资料。

如果你希望正确的判断 Inf 和 Nan 值,那么你应该使用 math 模块的 math.isinf math.isnan 函数:

>>> import math
>>> math.isinf(inf)
True
>>> math.isinf(ninf)
True
>>> math.isnan(nan)
True
>>> math.isinf(float("inf"))
True
>>> math.isinf(float("-inf"))
True
>>> math.isnan(float("nan"))
True

这样便准确无误了。既然我在谈论这个问题,就是再忠告:不要在 Python 中试图用 is 和 == 来判断一个对象是否是正负无穷或者 NaN。你就乖乖的用 math 模块吧,否则就是引火烧身。

当然也有别的方法来作判断,以下用 NaN 来举例,但仍然推荐用 math 模块,免得把自己弄糊涂。

用对象自身判断自己

>>> def isnan(num):
... return num != num
... 
>>> isnan(float("nan"))
True

用 numpy 模块的函数

>>> import numpy as np
>>> 
>>> np.isnan(np.nan)
True
>>> np.isnan(float("nan"))
True
>>> np.isnan(float("inf"))
False

Numpy 的 isnan 函数还可以对整个 list 进行判断:

>>> lst = [1, float("nan"), 2, 3, np.nan, float("-inf"), 4, np.nan]
>>> lst
[1, nan, 2, 3, nan, -inf, 4, nan]
>>> np.isnan(lst)
array([False, True, False, False, True, False, False, True], dtype=bool)

这里的 np.isnan 返回布尔值数组,如果对应位置为 NaN,返回 True,否则返回 False。

更多关于Python中Inf与Nan的判断问题详解相关文章请关注PHP中文网!

热心网友 时间:2022-05-10 22:00

在使用numpy数组的过程中时常会出现nan或者inf的元素,可能会造成数值计算时的一些错误。这里提供一个numpy库函数的用法,使nan和inf能够最简单地转换成相应的数值。

numpy.nan_to_num(x): 
使用0代替数组x中的nan元素,使用有限的数字代替inf元素

使用范例:

>>>import numpy as np>>> a = np.array([[np.nan,np.inf],\...               [-np.nan,-np.inf]])>>> a
array([[  nan,   inf],
[  nan,  -inf]])>>> np.nan_to_num(a)
array([[ 0.00000000e+000,  1.79769313e+308],
[ 0.00000000e+000, -1.79769313e+308]])1234567

和此类问题相关的还有一组判断用函数,包括:

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com