请问R语言里有没有做非线性VAR模型的包?

发布网友 发布时间:2022-04-22 06:54

我来回答

2个回答

热心网友 时间:2022-06-17 00:13

这里分享一下R语言实现VAR和SVAR的整个流程。

主要步骤包括:

1.单位根检验

2.确定滞后阶数

3.格兰杰因果检验

4.模型稳定性检验

5.脉冲响应

6.方差分解

(Johansen协整检验,如果需要的话)

整个过程用到的R语言的扩展包有:

library(zoo)

library(vars)

library(tseries)


首先,数据是下面的样子:

ps:数据是时间序列类型,可以通过下面方法将dataframe转成时间序列类型

data = ts(data)


1.单位根检验

#对data的第一列进行单位根检验

adf.test(data[,1])


2.滞后阶数确定

VARselect函数结果包括AIC、HQ、SC和FPE准则

#参数y为时间序列数据,lag.max为最大滞后阶数

#参数type值包括const截距,trend趋势,both同时包含截距和趋势,none不包含截距和趋势

VARselect(y=data, lag.max = 10, type = c("const"))


3.格兰杰因果检验

格兰杰因果检验有两个方法,第一个是在构造模型之前,第二个是在构造模型之后在模型的基础上进行格兰杰因果检验。

(1)构造模型之前格兰杰因果检验

#函数格式:grangertest(yt~xt)

eg:

grangertest(Value~BCI)


(2)构造模型之后格兰杰因果检验

#函数格式:causality(VARModel,cause)

eg

var =  VAR(data ,p = 2, type = "const")

causality(var,cause=c('Count','Value'))


ps:在这里如果想要构建SVAR模型的话,需要根据实际情况构建两个矩阵amat和bmat,然后使用这两个矩阵来构建SVAR模型:

svar = SVAR(var,Amat = amat,Bmat = bmat)


4.模型稳定性检验

#这里使用“OLS-CUSUM”,它给出的是残差累积和,在该检验生成的曲线图中,残差累积和曲线以时间为横坐标,

#图中绘出两条临界线,如果累积和超出了这两条临界线,则说明参数不具有稳定性。 

sta = stability(var, type = c("OLS-CUSUM"), h = 0.15, dynamic = FALSE, rescale = TRUE)

plot(sta)##结果稳健


5.脉冲响应

#标题栏说明,这是BCI(或者其他变量)对各个变量(包括BCI自身)的脉冲响应

(1)VAR脉冲响应

var.irf<-irf(var,n.head=10)

plot(var.irf)

(2)SVAR脉冲响应

svar.irf<-irf(svar,n.ahead = 100)

plot(svar.irf)


6.方差分解

#反映了各变量的贡献率

(1)VAR方差分解

fevd1<-fevd(var, n.ahead = 10)

fevd1$Count

(2)SVAR方差分解

fevd2<-fevd(svar, n.ahead = 10)

fevd2$Value


ps:有时候需要进行Johansen协整检验

#Johansen协整检验,

#对r=0(不存在协整关系)的检验统计量大于临界值,表明拒绝原假设

yJoTest = ca.jo(data, type = c("trace"), ecdet = c("none"), K = 2) 

summary(yJoTest)


网页链接

热心网友 时间:2022-06-17 00:13

这个下载包的话是有的但是还得去自己联系一下当地的商家

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com