发布网友 发布时间:2022-04-22 06:33
共1个回答
热心网友 时间:2023-07-01 00:14
感知器(英语:Perceptron)。
是Frank Rosenblatt在1957年就职于康奈尔航空实验室(Cornell Aeronautical Laboratory)时所发明的一种人工神经网络。它可以被视为一种最简单形式的前馈神经网络,是一种二元线性分类器。
感知机是生物神经细胞的简单抽象。神经细胞结构大致可分为:树突、突触、细胞体及轴突。单个神经细胞可被视为一种只有两种状态的机器——激动时为‘是’,而未激动时为‘否’。神经细胞的状态取决于从其它的神经细胞收到的输入信号量,及突触的强度(抑制或加强)。
当信号量总和超过了某个阈值时,细胞体就会激动,产生电脉冲。电脉冲沿着轴突并通过突触传递到其它神经元。为了模拟神经细胞行为,与之对应的感知机基础概念被提出,如权量(突触)、偏置(阈值)及激活函数(细胞体)。
在人工神经网络领域中,感知机也被指为单层的人工神经网络,以区别于较复杂的多层感知机(Multilayer Perceptron)。
作为一种线性分类器,(单层)感知机可说是最简单的前向人工神经网络形式。尽管结构简单,感知机能够学习并解决相当复杂的问题。感知机主要的本质缺陷是它不能处理线性不可分问题。
历史
1943年,心理学家沃伦·麦卡洛克和数理逻辑学家沃尔特·皮茨在合作的《A logical calculus of the ideas immanent in nervous activity》论文中提出并给出了人工神经网络的概念及人工神经元的数学模型,从而开创了人工神经网络研究的时代。
1949年,心理学家唐纳德·赫布在《The Organization of Behavior》论文中描述了神经元学习法则——赫布型学习。
人工神经网络更进一步被美国神经学家弗兰克·罗森布拉特所发展。他提出了可以模拟人类感知能力的机器,并称之为‘感知机’。
1957年,在Cornell航空实验室中,他成功在IBM 704机上完成了感知机的仿真。两年后,他又成功实现了能够识别一些英文字母、基于感知机的神经计算机——Mark1,并于1960年6月23日,展示与众。
为了‘教导’感知机识别图像,弗兰克·罗森布拉特在Hebb学习法则的基础上,发展了一种迭代、试错、类似于人类学习过程的学习算法——感知机学习。除了能够识别出现较多次的字母,感知机也能对不同书写方式的字母图像进行概括和归纳。
但是,由于本身的局限,感知机除了那些包含在训练集里的图像以外,不能对受干扰(半遮蔽、不同大小、平移、旋转)的字母图像进行可靠的识别。
首个有关感知机的成果,由弗兰克·罗森布拉特于1958年发表在《The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain》的文章里。
1962年,他又出版了《Principles of Neurodynamics: Perceptrons and the theory of brain mechanisms》一书,向大众深入解释感知机的理论知识及背景假设。此书介绍了一些重要的概念及定理证明,例如感知机收敛定理。