如何用描点法画二次函数的图像?

发布网友 发布时间:2022-04-22 18:29

我来回答

1个回答

热心网友 时间:2023-10-24 17:15

二次函数y=ax^2的图像的画法

用描点法画二次函数y=ax^2的图像时,应在顶点的左、右两侧对称地选取自变量x的值,然后计算出对应的y值,这样的对应值选取越密集,描出的图像越准确。

用描点法画出二次函数y=x^2的图像,它是一条关于y轴对称的曲线,这样的曲线叫做抛物线。

因为抛物线y=x^2关于y轴对称,所以y轴是这条抛物线的对称轴,对称轴与抛物线的交点是抛物线的顶点,从图上看,抛物线y=x2的顶点是图象的最低点.因为抛物线y=x2有最低点.所以函数y=x2有最小值,它的最小值就是最低点的纵坐标。

基本图像

当a>0时,y=ax^2的图像

当a<0时,y=ax^2的图像

二次函数y=ax^2;,y=a(x-h)^2;,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:

解析式

y=ax^2;

y=ax^2+K

y=a(x-h)^2;

y=a(x-h)^2+k

y=ax^2+bx+c

顶点坐标

(0,0)

(0,K)

(h,0)

(h,k)

(-b/2a,4ac-b^2/4a)

对称轴

x=0

x=0

x=h

x=h

x=-b/2a

当h>0时,y=a(x-h)^2;的图象可由抛物线y=ax^2;向右平行移动h个单位得到,

当h<0时,则向左平行移动|h|个单位得到.

当h>0,k>0时,将抛物线y=ax^2;向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;

当h>0,k<0时,将抛物线y=ax^2;向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2-k的图象;

当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x+h)²+k的图象;

当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)²+k的图象;在向上或向下.向左或向右平移抛物线时,可以简记为“上加下减,左加右减”。

因此,研究抛物线 y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2;+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com