有向图的邻接矩阵一定是对称的吗?

发布网友 发布时间:2022-04-22 18:00

我来回答

3个回答

热心网友 时间:2023-07-12 16:56

有向图的邻接矩阵不一定是对称的,题目答案选A。

邻接矩阵(Adjacency Matrix)是表示顶点之间相邻关系的矩阵。设G=(V,E)是一个图,其中V={v1,v2,…,vn} [1]  。G的邻接矩阵是一个具有下列性质的n阶方阵:

1、对无向图而言,邻接矩阵一定是对称的,而且主对角线一定为零(在此仅讨论无向简单图),副对角线不一定为0,有向图则不一定如此。

2、在无向图中,任一顶点i的度为第i列(或第i行)所有非零元素的个数,在有向图中顶点i的出度为第i行所有非零元素的个数,而入度为第i列所有非零元素的个数。

3、用邻接矩阵法表示图共需要n^2个空间,由于无向图的邻接矩阵一定具有对称关系,所以扣除对角线为零外,仅需要存储上三角形或下三角形的数据即可,因此仅需要n(n-1)/2个空间。

扩展资料:

邻接矩阵特点

无向图的邻接矩阵一定是对称的,而有向图的邻接矩阵不一定对称。因此,用邻接矩阵来表示一个具有n个顶点的有向图时需要n^2个单元来存储邻接矩阵;对有n个顶点的无向图则只存入上(下)三角阵中剔除了左上右下对角线上的0元素后剩余的元素,故只需1+2+...+(n-1)=n(n-1)/2个单元。

无向图邻接矩阵的第i行(或第i列)非零元素的个数正好是第i个顶点的度。有向图邻接矩阵中第i行非零元素的个数为第i个顶点的出度,第i列非零元素的个数为第i个顶点的入度,第i个顶点的度为第i行与第i列非零元素个数之和。用邻接矩阵表示图,很容易确定图中任意两个顶点是否有边相连。

参考资料来源:百度百科——邻接矩阵

热心网友 时间:2023-07-12 16:56

选A 无向图的邻接矩阵一定是对称的。因为如果一个点i到j有边,则aij=aji=1;所以都是对称的。但是有向图就不一定了,点i 到 j 有边,aij=1,但j到i不一定有边,则aji不一定等于1、

有向图用邻接矩阵更加节省存储空间。因为无向图的邻接矩阵是对称的,所以也就是多用了一些存储空间。

热心网友 时间:2023-07-12 16:56

有向图的邻接矩阵不一定是对称的,因为它是有方向的,假如从a到b是可以通行的,但是从b到a则是逆行,为0。

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com