发布网友 发布时间:2022-04-22 18:18
共1个回答
热心网友 时间:2023-10-24 10:07
定理的提出 一般几何教科书中的“托勒密定理”,实出自依巴谷(Hipparchus)之手,托勒密只是从他的书中摘出。
[编辑本段]定理的内容 托勒密(Ptolemy)定理指出,圆的内接凸四边形两对对边乘积的和等于两条对角线的乘积。
原文:圆的内接四边形中,两对角线所包矩形的面积等于
一组对边所包矩形的面积与另一组对边所包矩形的面积之和。
从这个定理可以推出正弦、余弦的和差公式及一系列的三角恒等式,托勒密定理实质上是关于共圆性的基本性质.
[编辑本段]证明 一、(以下是推论的证明,托勒密定理可视作特殊情况。)
在任意四边形ABCD中,作△ABE使∠BAE=∠CAD
∠ABE=∠
ACD
因为△ABE∽△ACD
所以
BE/CD=AB/AC,即BE·AC=AB·CD
(1)
而∠BAC=∠DAE,,∠ACB=∠ADE
所以△ABC∽△AED相似.
BC/ED=AC/AD即ED·AC=BC·AD
(2)
(1)+(2),得
AC(BE+ED)=AB·CD+AD·BC
又因为BE+ED≥BD
(仅在四边形ABCD是某圆的内接四边形时,等号成立,即“托勒密定理”)
所以命题得证
复数证明
用a、b、c、d分别表示四边形顶点A、B、C、D的复数,则AB、CD、AD、BC、AC、BD的长度分别是:(a-b)、(c-d)、(a-d)、(b-c)、(a-c)、(b-d)。
首先注意到复数恒等式:
(a
−
b)(c
−
d)
+
(a
−
d)(b
−
c)
=
(a
−
c)(b
−
d)
,两边取模,运用三角不等式得。
等号成立的条件是(a-b)(c-d)与(a-d)(b-c)的辐角相等,这与A、B、C、D四点共圆等价。
四点不限于同一平面。
平面上,托勒密不等式是三角不等式的反演形式。
二、
设ABCD是圆内接四边形。
在弦BC上,圆周角∠BAC
=
∠BDC,而在AB上,∠ADB
=
∠ACB。
在AC上取一点K,使得∠ABK
=
∠CBD;
因为∠ABK
+
∠CBK
=
∠ABC
=
∠CBD
+
∠ABD,所以∠CBK
=
∠ABD。
因此△ABK与△DBC相似,同理也有△ABD
~
△KBC。
因此AK/AB
=
CD/BD,且CK/BC
=
DA/BD;
因此AK·BD
=
AB·CD,且CK·BD
=
BC·DA;
两式相加,得(AK+CK)·BD
=
AB·CD
+
BC·DA;
但AK+CK
=
AC,因此AC·BD
=
AB·CD
+
BC·DA。证毕。
三、
托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和).已知:圆内接四边形ABCD,求证:AC·BD=AB·CD+AD·BC.
证明:如图1,过C作CP交BD于P,使∠1=∠2,又∠3=∠4,∴△ACD∽△BCP.得AC:BC=AD:BP,AC·BP=AD·BC
①。又∠ACB=∠DCP,∠5=∠6,∴△ACB∽△DCP.得AC:CD=AB:DP,AC·DP=AB·CD
②。①+②得
AC(BP+DP)=AB·CD+AD·BC.即AC·BD=AB·CD+AD·BC.
[编辑本段]推论 1.任意凸四边形ABCD,必有AC·BD≤AB·CD+AD·BC,当且仅当ABCD四点共圆时取等号。
2.托勒密定理的逆定理同样成立:一个凸四边形两对对边乘积的和等于两条对角线的乘积,则这个凸四边形内接于一圆、
[编辑本段]推广
托勒密不等式
:四边形的任两组对边乘积不小于另外一组对边的乘积,取等号当且仅当共圆或共线。
简单的证明:复数恒等式:(a-b)(c-d)+(a-d)(b-c)=(a-c)(b-d),两边取模,
得不等式AC·BD≤|(a-b)(c-d)|+|(b-c)(a-d)|=AB·CD+BC·AD
注意:
1.等号成立的条件是(a-b)(c-d)与(a-d)(b-c)的辐角相等,这与A、B、C、D四点共圆等价。
2.四点不限于同一平面。
欧拉定理:
在一条线段上AD上,顺次标有B、C两点,则AD·BC+AB·CD=AC·BD