反函数的导数?

发布网友 发布时间:2022-04-24 00:44

我来回答

5个回答

热心网友 时间:2023-10-16 03:57

考虑需要求导的函数y=x^(1/2),它存在反函数x=y^2。[x^(1/2)]'=1/(y^2)'=1/(2y)=1/[2x^(1/2)]=(1/2)x^(-1/2)。用反函数求导时,注意不能按习惯把要用的反函数x=y^2写成y=x^2

反函数的导数是原函数导数的倒数。例题:求y=arcsinx的导函数,反函数的导数就是原函数导数的倒数。首先,函数y=arcsinx的反函数为x=siny,所以:y‘=1/sin’y=1/cosy,因为x=siny,所以cosy=√1-x2,所以y‘=1/√1-x2。

导函数

如果函数y=f(x)在开区间内每一点都可导,就称函数f(x)在区间内可导。这时函数y=f(x)对于区间内的每一个确定的x值,都对应着一个确定的导数值,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y'、f'(x)、dy/dx或df(x)/dx,简称导数。

导数是微积分的一个重要的支柱。牛顿及莱布尼茨对此做出了贡献。

以上内容参考:百度百科-导数

热心网友 时间:2023-10-16 03:57

反函数的导数等于直接函数导数的倒数。
(这句话是对的)

但你的解题有点问题:
y=arcsinx的反函数是:
x=siny
为了表述上的习惯性,我们一般说
他的反函数是:
y=sinx
但是在求导数的时候就不能这样了

应该是这样
y=arcsinx的导数
=1/(siny)'
=1/cosy
=1/根号(1-sin^2y)
=1/根号(1-x^2)

热心网友 时间:2023-10-16 03:58

你的理解有点问题,“反函数的导数等于直接函数导数的倒数”的意思是:
令x=g(y)是y=f(x)的反函数,则:g'(y)=1/f'(x)
就拿你的例子来说明
y=x^2(不妨设x≥0)的反函数是:
x=√y
为了表述上的习惯性,我们一般说
他的反函数是:
y=√x
但是在求导数的时候就不能这样了
应该是这样:
f(x)=x^2的反函数为:x=g(y)=√y,
所以有:g'(y)=1/f'(x)
即:
(√y)'=1/(x^2)'
分别计算
1/(x^2)'和(√y)':
1/(x^2)'=1/(2x)
(√y)'=1/(2√y)=1/[2√(x^2)]=1/(2x)
所以:(√y)'=1/(x^2)'
也就是反函数的导数等于直接函数导数的倒数
不知道你看明白没……?
如果还有不懂的,再补充提问吧……

热心网友 时间:2023-10-16 03:58

9.y=arcsinx
x=siny
x'=cosy
y'=1/x'=1/cosy=1/√1-sin^2y=1/√1-x^2

它例:5.y=sinx
⊿y=sin(x+⊿x)-sinx=2cos(x+⊿x/2)sin(⊿x/2)
⊿y/⊿x=2cos(x+⊿x/2)sin(⊿x/2)/⊿x=cos(x+⊿x/2)sin(⊿x/2)/(⊿x/2)
所以lim⊿x→0⊿y/⊿x=lim⊿x→0cos(x+⊿x/2)•lim⊿x→0sin(⊿x/2)/(⊿x/2)=cosx
6.类似地,可以导出y=cosx y'=-sinx。
7.y=tanx=sinx/cosx
y'=[(sinx)'cosx-sinx(cosx)']/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x
8.y=cotx=cosx/sinx
y'=[(cosx)'sinx-cosx(sinx)']/sin^2x=-1/sin^2x

10.y=arccosx
x=cosy
x'=-siny
y'=1/x'=-1/siny=-1/√1-cos^2y=-1/√1-x^2
11.y=arctanx
x=tany
x'=1/cos^2y
y'=1/x'=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2
12.y=arccotx
x=coty
x'=-1/sin^2y
y'=1/x'=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2

参考资料:《数学手册》1994版第二次印刷

热心网友 时间:2023-10-16 03:57

考虑需要求导的函数y=x^(1/2),它存在反函数x=y^2。[x^(1/2)]'=1/(y^2)'=1/(2y)=1/[2x^(1/2)]=(1/2)x^(-1/2)。用反函数求导时,注意不能按习惯把要用的反函数x=y^2写成y=x^2

反函数的导数是原函数导数的倒数。例题:求y=arcsinx的导函数,反函数的导数就是原函数导数的倒数。首先,函数y=arcsinx的反函数为x=siny,所以:y‘=1/sin’y=1/cosy,因为x=siny,所以cosy=√1-x2,所以y‘=1/√1-x2。

导函数

如果函数y=f(x)在开区间内每一点都可导,就称函数f(x)在区间内可导。这时函数y=f(x)对于区间内的每一个确定的x值,都对应着一个确定的导数值,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y'、f'(x)、dy/dx或df(x)/dx,简称导数。

导数是微积分的一个重要的支柱。牛顿及莱布尼茨对此做出了贡献。

以上内容参考:百度百科-导数

热心网友 时间:2023-10-16 03:57

反函数的导数等于直接函数导数的倒数。
(这句话是对的)

但你的解题有点问题:
y=arcsinx的反函数是:
x=siny
为了表述上的习惯性,我们一般说
他的反函数是:
y=sinx
但是在求导数的时候就不能这样了

应该是这样
y=arcsinx的导数
=1/(siny)'
=1/cosy
=1/根号(1-sin^2y)
=1/根号(1-x^2)

热心网友 时间:2023-10-16 03:58

你的理解有点问题,“反函数的导数等于直接函数导数的倒数”的意思是:
令x=g(y)是y=f(x)的反函数,则:g'(y)=1/f'(x)
就拿你的例子来说明
y=x^2(不妨设x≥0)的反函数是:
x=√y
为了表述上的习惯性,我们一般说
他的反函数是:
y=√x
但是在求导数的时候就不能这样了
应该是这样:
f(x)=x^2的反函数为:x=g(y)=√y,
所以有:g'(y)=1/f'(x)
即:
(√y)'=1/(x^2)'
分别计算
1/(x^2)'和(√y)':
1/(x^2)'=1/(2x)
(√y)'=1/(2√y)=1/[2√(x^2)]=1/(2x)
所以:(√y)'=1/(x^2)'
也就是反函数的导数等于直接函数导数的倒数
不知道你看明白没……?
如果还有不懂的,再补充提问吧……

热心网友 时间:2023-10-16 03:59

y=arcsinx的直接函数是x=siny,而(siny)'=cosy
因为-pai/2<=x<=pai/2,所以cosy>=0,cosy=根号(1-sin^2y)=根号(1-x^2)
因此(arcsinx)'=1/(1-x^2)^(1/2)

热心网友 时间:2023-10-16 03:58

9.y=arcsinx
x=siny
x'=cosy
y'=1/x'=1/cosy=1/√1-sin^2y=1/√1-x^2

它例:5.y=sinx
⊿y=sin(x+⊿x)-sinx=2cos(x+⊿x/2)sin(⊿x/2)
⊿y/⊿x=2cos(x+⊿x/2)sin(⊿x/2)/⊿x=cos(x+⊿x/2)sin(⊿x/2)/(⊿x/2)
所以lim⊿x→0⊿y/⊿x=lim⊿x→0cos(x+⊿x/2)•lim⊿x→0sin(⊿x/2)/(⊿x/2)=cosx
6.类似地,可以导出y=cosx y'=-sinx。
7.y=tanx=sinx/cosx
y'=[(sinx)'cosx-sinx(cosx)']/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x
8.y=cotx=cosx/sinx
y'=[(cosx)'sinx-cosx(sinx)']/sin^2x=-1/sin^2x

10.y=arccosx
x=cosy
x'=-siny
y'=1/x'=-1/siny=-1/√1-cos^2y=-1/√1-x^2
11.y=arctanx
x=tany
x'=1/cos^2y
y'=1/x'=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2
12.y=arccotx
x=coty
x'=-1/sin^2y
y'=1/x'=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2

参考资料:《数学手册》1994版第二次印刷

热心网友 时间:2023-10-16 03:59

y=arcsinx的直接函数是x=siny,而(siny)'=cosy
因为-pai/2<=x<=pai/2,所以cosy>=0,cosy=根号(1-sin^2y)=根号(1-x^2)
因此(arcsinx)'=1/(1-x^2)^(1/2)

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com