发布网友 发布时间:2022-04-23 13:45
共5个回答
热心网友 时间:2022-05-07 08:29
作为人工智能最稀缺的人才之一,深度学习工程师面临近百万的缺口,成为了各大企业竞相争夺的香饽饽,月薪大都在30K-80K之间。越来越多的程序员、院校学生开始学习深度学习算法。
无论你是Python小白,还是初级算法工程师,亦或是技术骨干,甚至是技术总监,都建议你不要错过我们的《AI深度学习》。
01适合各阶段互联网人
1)Python小白快速入门
如果你马上面临毕业找工作,或者打算转到互联网IT行业,我们赠送的Python入门网课,可以让无Python编程基础的你迅速入门。之后,高阶版的《AI深度学习》,可以让你系统地入门了解深度学习的前沿技术、应用成果,助你快速入行。
2)初级算法工程师的实操指南
如果你是刚入行不到3年,还在打基础的初级算法工程师,《AI深度学习》会让你以企业级项目的实操开始,逐步提升能力。课程由中科院专家亲自传授,可反复观看,让你随时随地查漏补缺,直面复杂的开发环境,比 “百度一下” 更精准。
3)技术骨干的进阶秘籍
如果你是团队的技术骨干,《AI深度学习》可以帮助你系统梳理语音识别、图像识别、机器对话等前沿技术,搭建完整的技术体系;还能够帮你横向拓展相关领域知识,增强自身竞争力。
4)技术总监管理团队的神助攻
如果你是指点技术江山的一把手,这个紧跟市场需求开发的课程,可以帮助你快速掌握市场技术动向。课程交流群的不同学员,也可以让你了解每个层级人的真实想法,管理起来更加得心应手。
毫不夸张地说,只要你的工作与人工智能有关,《AI深度学习》就会成为你求职、工作、管理团队过程中不可或缺的神助攻。
02 更系统 更实用
为了让每个学员都能用更短的时间学到更深的知识,我们将课程浓缩到5周、30课时,时间虽短,但内容更精。6大实战项目、8大课程阶段,不论是课程的系统性还是实用性,《AI深度学习》绝对是目前最完美的存在。
1)8大授课阶段
8大授课阶段,循序渐进,以实操贯穿理论,避免纸上谈兵。
第一阶段:AI概述及前沿应用成果介绍
第二阶段:神经网络原理及TensorFlow实战
第三阶段:神经网络原理及TensorFlow实战
第四阶段:生成式对抗网络原理及项目实战
第五阶段:深度学习分布式处理项目实战
第六阶段:深度强化学习及项目实战
第七阶段:车牌识别项目实战
第八阶段:深度学习前沿技术简介
只有这样内容深入的课程,才能真正帮你快速建立、梳理相关知识体系,让你的成长更有方向、更高效。
2)严选6个项目实战
对比市面上的同类型课程,大都是局限在某一品类的项目训练,项目数量控制在3个左右。《AI深度学习》有6大实战项目,都是来自于企业的项目实操。学员在学习期间,直面复杂的开发环境,摆脱开源项目理想化开发,更加符合企业真实需求。
项目包含“手写数字识别”“文学作品文本特征向量化实战”“基于GAN生*脸图片”“基于分布式GAN人脸图片生成”“基于深度强化学习的迷宫游戏”“企业级车牌识别”6个项目。
涵盖行业内75%技术要点,如语音识别(微信语音转文字、Siri、天猫精灵等)、图像识别(火车站人 脸识别、人脸打卡、办卡人脸识别、健康码人脸识别、违章拍摄、百度识图、淘宝识图、有声绘本)、机器对话(微软小冰、同声翻译等)都有所掌握,满足各类就业需求。
此外,课程中的知识点,都经过中科院专家实操验证,任何一个知识点拿来就能用,真正助你职场升级,是一份实打实的深度学习「葵花宝典」。
3)中科院专家多轮打磨
为了让内容更具系统性、实用性,课程全部由中科院专家亲自授课答疑。
可以说,如果你想要提升技能,在专业领域更上一步,《AI深度学习》可以成为你当下的选择!
热心网友 时间:2022-05-07 09:47
婡深臫度学头习筿是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。
深度学习在搜索技术,数据挖掘,机器学习,机器翻译,自然语言处理,多媒体学习,语音,推荐和个性化技术,以及其他相关领域都取得了很多成果。深度学习使机器模仿视听和思考等人类的活动,解决了很多复杂的模式识别难题,使得人工智能相关技术取得了很大进步。
背景介绍
机器学习(Machine Learning)是一门专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能的学科。
1959年美国的塞缪尔(Samuel)设计了一个下棋程序,这个程序具有学习能力,它可以在不断地对弈中改善自己的棋艺。4年后,这个程序战胜了设计者本人。
又过了3年,这个程序战胜了美国一个保持8年之久的常胜不败的冠军。这个程序向人们展示了机器学习的能力,提出了许多令人深思的社会问题与哲学问题。
热心网友 时间:2022-05-07 11:22
深度学习(DL, Deep Learning)是机器学习(ML, Machine Learning)领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标——人工智能(AI, Artificial Intelligence),他是人工神经网络的研究的概念。
深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。
深度学习在搜索技术,数据挖掘,机器学习,机器翻译,自然语言处理,多媒版体学习,语音,推荐和个性化技术,以及其他相关领域都取得了很多成果。深度学习使机器模仿视权听和思考等人类的活动,解决了很多复杂的模式识别难题,使得人工智能相关技术取得了很大进步。
热心网友 时间:2022-05-07 13:13
深度学习(deep learing)是机械学习的分支,是一种以人工神经网络为架构,对数据进行表征学习的算法。至今已有数种深度学习架构,如深度神经网络、卷积神经网络和深度置信网络和递归神经网络已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。另外。“深度学习”已成为类似术语,或者说是神经网络的品牌重塑。
热心网友 时间:2022-05-07 15:21
人们一般认为深度学习在语音识别和图像处理方面能够取得长足进度,是因为这两个领域的相关特征信息都是相对低层次的,可以借助深度学习的强大学习能力学习其中的复杂信息;而到了自然语言处理领域,人们利用深度学习做过很多尝试,发现很难取得像语音识别和图像处理那么大的突破,原因在于自然语言的相关特征信息都是相对高层次的(如自然语言的基本单位——词汇——本身就有丰富的语义内涵,与图像中的“线条”、“纹理”等特征相比尤其如此),在深度学习之前就由语言专家编制了很多精致而复杂的知识库,如WordNet等,这些知识已经将相关处理性能推到了较高层次。因此,当深度学习进入自然语言时,如果还是像语音识别、图像处理那样从零知识开始做特征学习,相当于将丰富的语言知识弃之不用而另起炉灶,是不符合自然语言处理特点的。所以,深度学习的一个可能重要的发展方向是,如何在深度学习框架中高效地融合人们已经构建出来的丰富先验知识(包括语言知识、世界知识)。