如何突破该重难点的教学设计人教版数学

发布网友 发布时间:2022-04-23 10:37

我来回答

1个回答

热心网友 时间:2023-06-26 16:16

一堂课上的好不好,关键看教师是否正确地讲解了教材的基本内容,是否突破了教材的重点及解决了教材的难点,使学生真正地理解和掌握了教材的基本知识。教师在教学中能否抓住重点、突破难点,是做好教学工作的基本条件,也是教师能力的表现。 一、什么是教学重点和教学难点 所谓教学重点,“在教材内容的逻辑结构的特定层次中占相对重要的前提判断”,也就是“在整个知识体系或课题体系中处于重要地位和突出作用的内容”。如果某知识点是某单元内容的核心、是后继学习的基础或有广泛应用等,即可确定它是教学重点。也就是学生必须掌握的基本知识和基本技能,如意义、法则、性质、计算方法还包括数量关系、解决问题的策略等。例如,一年级100以内数的大小比较这节课的教学重点是比较两个数大小的方法;二年级平移和旋转的教学重点是初步感知平移和旋转现象;三年级中的平均数教学重点是理解平均数的含义;24时计时法的教学重点是知道24时计时法的含义,会用24时计时法表示时刻;四年级连减的简便计算教学重点是掌握连减的简便算法;五年级长方体的体积教学重点是运用长方体的体积公式解决实际问题;六年级用比例知识解决问题教学重点是会用比例知识解决问题。 教学难点,一般指对于大多数学生来说是理解和掌握起来感觉比较困难的关键性的知识点或容易出现混淆、错误的问题。例如,一年级实践活动的摆一摆,想一想的难点是通过观察找出用圆片摆出不同数的规律;二年级平移和旋转的教学难点是会在方格纸上画一个简单图形沿水平和竖直方向平移后的图形;三年级中的年月日的教学难点是记住每个月及平年闰年的天数,初步学会判断某一年是平年还是闰年。四年级李志兰和刘永霞老师讲的两节课的难点是灵活选择计算方法解决实际问题;五年级长方体的体积教学难点是理解长方体的体积公式推导过程;六年级图形的放大与缩小教学难点是按一定的比例将图形放大和缩小。难点有时和重点是一致的。六年级上册的一个数乘以分数的意义的理解,既是教学中的一个难点,同时也是教学中的一个重点。 教学重点和教学难点也具有各自的特点。 教学重点来自于知识本身,是由于数学知识内在的逻辑结构而客观存在的,因而对每一个学生均是一致的。而教学难点却不同,它依赖于学生自身的理解和接受能力。实践证明不同层次的学生对于同一知识点的难点突破速度与水平是参差不齐的。 由于教学重点与难点二者形成的依据不同,所以有的教学内容既是教学重点又是教学难点,有的内容是教学重点但不一定是教学难点,有的内容是教学难点但不一定是教学重点。但是教学重点和难点都是由同一教学内容的教学目标所决定的。 二、研究教学重难点的意义何在 可以用这样一句话概括——落实教学重点是使学生掌握知识的前提,突破难点是教学成功的关键。而教师在教学过程中突破重难点的方法往往是使学生活跃思维、激发兴趣的催化剂。 三、如何在数学教学中突破重点和难点 这需要每一位数学教师在教学实践中不断地学习、总结、摸索。下面我就谈一谈对此问题的点滴体会和做法。1.抓住知识间的衔接,运用迁移的方法突破重点和难点 我们先来关注数学的学科特点。小学数学学科的特点之一就是系统性很强,每项新知识往往和旧知识紧密相连,新知识就是旧知识的延伸和发展,旧知识就是新知识的基础和生长点。有时新知识可以由旧知识迁移而来,可同时它又成为后续知识的基础。因此,数学知识点就像一根根链条节节相连、环环相扣。 由此可见,如果老师能够善于捕捉数学知识之间的衔接点,自觉地以“迁移”作为一种帮助学生学习的方法,以旧引新、旧中蕴新,组织积极的迁移,就不难实现教学重、难点的突破了。 案例一:分数的基本性质 分数的基本性质是这样叙述的:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。 教学时,如果把它作为一个孤立知识点来教学,通过观察1/2=2/4=6/12从左到右、从右到左的逐一变化,一遍又一遍的叙述由谁到谁的变化过程,老师的目的就是想让学生在不断的重复中体会这一规律的存在,学会用同一语式去表达,但是到最后学生也未必能够结合自己的理解,用一句比较简练、准确地数学语言来描述出分数的基本性质。 如果,我们在教学前先来分析一下分数的基本性质的知识基础,就会找到与它的叙述非常相似的“商不变的性质”和沟通两者联系的“分数与除法的关系”;此时我们为了突破“引导学生归纳概括出分数的基本性质” 教学难点,就可以在课前的复习环节安排对于“商不变的性质”的叙述和 “分数与除法的关系”的练习。 可以运用迁移方法教学的知识点还很多,如除数是两位数的除法,它在学习了除数是一位数的除法笔算的基础上迁移学习,只是增加试商和调商且难度增大、方法更加灵活。再如,乘数是多位数的乘法是在学习一位数乘法的基础上迁移,运算方法相同。 由此可以看出,在数学教学过程中,要重视揭示和建立新旧知识的内在联系,从已有的知识和经验出发,运用迁移的方法来突

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com