求一个关于人工智能的小实验

发布网友 发布时间:2022-04-21 01:18

我来回答

2个回答

热心网友 时间:2022-06-17 01:43

人工智能第二次实验报告

1.实验题目:

遗传算法的设计与实现

2.实验目的:

通过人工智能课程的学习,熟悉遗传算法的简单应用。

3.实验内容

用遗传算法求解f (x) = x2 的最大值,x∈ [0,31],x取整数。

可以看出该函数比较简单,只要是为了体现遗传算法的思想,在问题选择上,选了一个比较容易实现的,把主要精力放在遗传算法的实现,以及核心思想体会上。

4. 实验过程:

1.实现过程

(1)编码
使用二进制编码,随机产生一个初始种群。L 表示编码长度,通常由对问题的求解精度决定,编码长度L 越长,可期望的最优解的精度也就越高,过大的L 会增大运算量。针对该问题进行了简化,因为题设中x∈ [0,31],所以将二进制长度定为5就够用了;

(2)生成初始群体
种群规模表示每一代种群中所含个体数目。随机产生N个初始串结构数据,每个串结构数据成为一个个体,N个个体组成一个初始群体,N表示种群规模的大小。当N取值较小时,可提高遗传算法的运算速度,但却降低种群的多样性,容易引起遗传算法早熟,出现假收敛;而N当取值较大时,又会使得遗传算法效率降低。一般建议的取值范围是20—100。
(3)适应度检测
根据实际标准计算个体的适应度,评判个体的优劣,即该个体所代表的可行解的优劣。本例中适应度即为所求的目标函数;

(4)选择
从当前群体中选择优良(适应度高的)个体,使它们有机会被选中进入下一次迭代过程,舍弃适应度低的个体。本例中采用轮盘赌的选择方法,即个体被选择的几率与其适应度值大小成正比;

(5)交叉
遗传操作,根据设置的交叉概率对交配池中个体进行基因交叉操作,形成新一代的种群,新一代中间个体的信息来自父辈个体,体现了信息交换的原则。交叉概率控制着交叉操作的频率,由于交叉操作是遗传算法中产生新个体的主要方法,所以交叉概率通常应取较大值;但若过大的话,又可能破坏群体的优良模式。一般取0.4到0.99。

(6)变异
随机选择中间群体中的某个个体,以变异概率大小改变个体某位基因的值。变异为产生新个体提供了机会。变异概率也是影响新个体产生的一个因素,变异概率小,产生新个体少;变异概率太大,又会使遗传算法变成随机搜索。一般取变异概率为0.0001—0.1。

(7)结束条件
当得到的解大于等于900时,结束。从而观看遗传的效率问题

热心网友 时间:2022-06-17 01:43

(1)这类品牌电脑,都含有正版软件;如果之前登记过,安装操作系统(或者一键还原)后,会自动激活。 (2)可登记微软账号,也可以不登记,不是强制性的。 (3)最好选择原版操作系统,即从微软官网下载并制作启动U盘,不要使用那些克隆的。

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com