地下水水化学类型变化

发布网友 发布时间:2022-04-21 06:14

我来回答

1个回答

热心网友 时间:2022-06-18 10:39

随着地下水开采量不断增加,地下水的天然水化学平衡状态被打破,水化学类型也相应发生改变。其变化特征分为两种:①水化学类型向重碳酸型水转变,地下水硬度增加;②水化学类型由重碳酸型水转变为其他类型,矿化度增大,水质变差。

1.水化学类型向重碳酸型水转变,地下水硬度增高

主要发生在山前冲洪积扇前缘和地下水开采漏斗区,由于循环条件的改变,地下水流场发生变化,浅层地下水循环加快。根据目前掌握的资料来看,这种水化学类型变化在西北干旱区基本上没有发生,而在山西六大盆地和华北平原及松嫩平原变化比较明显。

山西盆地浅层地下水化学类型的变化表现为由多种水化学类型逐渐转变为简单的类型。对比太原盆地1983年和2003年两期水化学变化可见:水化学类型由重碳酸-硫酸型水、重碳酸-氯化物型水、硫酸型水、硫酸重-碳酸型水、硫酸-氯化物型水、氯化物-硫酸型水、氯化物-重碳酸型水等多种水质类型变化到目前以重碳—酸硫酸型水和重碳酸—氯化物型水为主(图5-1和图5-2)。1983年矿化度为1~3g/L的面积为1657km2,3~5g/L的面积为40km2;2003年为5km2,基本没有大于3g/L水。在地下水集中开采区,中深层承压水的矿化度和硬度有增加的趋势(图5-3)。

忻州盆地从20世纪70年代以来,冲洪积倾斜平原的中上部的浅层地下水,其地下水主要化学成分及化学类型变化不大,地下水主要化学成分及化学类型变化不大,为重碳酸型水,矿化度小于500mg/L。而在滹沱河中下游段的冲洪积交接带及冲湖积平原区,矿化度减小,水质具有变好的趋势。在崞阳到原平市城区一带,由重碳酸-硫酸型或硫酸-重碳酸型转化为重碳酸型水(图5-4),矿化度由1977年的520~840mg/L降低到2004年的310~510mg/L。在忻府区解原、忻府城区、东楼、西张、双堡、官庄一带,由硫酸-重碳酸或重碳酸-氯化物型水转化为重碳酸型水,矿化度由1977年的500~1300mg/L降低到2004年的300~350mg/L。而在忻府区、定襄县的高城、北张、受禄、定壤县城、季庄等广大地区,由重碳酸-氯化物型水转化为重碳酸-硫酸型水,矿化度由1977年的1000~1600mg/L,降低到2004年的600~930mg/L。

图5-1 太原盆地1983年水化学图

(据韩颖等,2009)

(图中Cl、H、S、N、M、C分别表示Cl、HCO3、SO4、Na、Mg、Ca)

据统计,河北平原浅层地下水重碳酸盐型(包括重碳酸为主的混合型)水的分布面积由1975年的45792km2增加到2005年的56032km2,硫酸盐型(包括硫酸盐为主的混合型)地下水面积由7294km2减少到4279km2,氯化物型(包括氯化物为主的混合型)地下水由19588km2减少到12818km2,见图5-5。

图5-2 太原盆地2003年水化学图

(据韩颖等,2009)

(图中Cl、H、S、N、M、C分别表示Cl、HCO3、SO4、Na、Mg、Ca)

对比鲁北平原19年与2005年地下水水化学类型(图5-6)可见:西部地下水开采区,水化学类型向重碳酸盐型水转化,浅层地下水开采程度较高,沿黄河地带受到地表淡水的经常性补给,重碳酸盐型水的分布范围不断扩大。冠县-临清的广大地区,1984年水化学类型为重碳酸盐氯化物型水,目前均变为重碳酸盐型水;东阿、平原大部、阳谷、夏津、武城、济阳局部均由19年的重碳酸盐氯化物型水、重碳酸-硫酸盐-氯化物型水转变为重碳酸盐型水。

图5-3 太原盆地西张水源地中深层水水质变化曲线

(据韩颖等,2009)

豫北平原浅层地下水(重碳酸盐型水)从山前及黄河上游向下游、由渠道轴部向两侧扩展。在1959年至1965年间,地下水开采量很小,豫北地区地表大部分为盐碱地,沿黄一带只有局部地区矿化度小于1g/L,水化学类型大部分为重碳酸硫酸盐型水,只有封丘县一带、武陟县和原阳的黄河大堤以南局部地区为重碳酸型水。人民胜利渠渠首区为HCO3-Ca·Mg水,矿化度小于1g/L。到1978年沿人民胜利渠和其它渠道两侧地下水矿化度大于1g/L界线向北和东扩展,新乡市东部的咸水被切开成两部分,西部的交接洼地地下水矿化度大于1的咸水区成孤立状分布,濮阳县至南乐的地下水矿化度小于1g/L的淡水已连为一体,重碳酸型水已扩至武陟、原阳、封丘北部。至1987年,大部分地区地下水矿化度已变为小于1g/L的淡水;大于1g/L的水已成孤岛状分布于各地,大部分地区地下水水化学类型已变为重碳酸型水,而阳离子Na·Ca型水面积逐渐扩大至原阳县。2002年,淡水面积基本稳定,咸水在1987年基础上又有缩小,沿黄一带仅在封丘东南部的黄河转弯处有一些咸水,淡水扩展缓慢,重碳酸型水扩展缓慢。

华北平原深层地下水重碳酸型水面积增加主要集中在河北平原,其分布面积由20世纪70年代的 50295km2增加到 55066km2,硫酸盐型地下水面积由 1129km2增加到1463km2,氯化物型地下水由6343km2增加到10850km2(表5-1)。天津地区第Ⅱ含水组大量开采后,其水化学特征并没有发生明显变化。

图5-4 忻州盆地地下水化学类型及矿化度动态曲线

(据韩颖等,2009)

表5-1 河北平原深层地下水水化学类型分布面积变化统计表 单位:km2

(据张兆吉等,2009)

图5-5 不同年份浅层水化学类型面积

(据张兆吉等,2009)

图5-6 鲁北平原浅层地下水水化学类型变化图

(据张兆吉等,2009)

西辽河平原部分地区水化学类型从20世纪70年代末80年代初的HCO3-Na·Ca水转变成了HCO3-Ca·Na水,HCO3-Ca·Na水转变成了HCO3-Ca水。在地下水的强开采区(平原中部开鲁、奈曼、科尔沁区),地下水循环交替较快,占绝对优势的Ca·Na型水、Ca·Na·Mg型水面积,2003年比70、80年代有较大增加,与此相反,Na型水、Na·Ca型水面积则明显减少。科左后旗一带的Ca·Na型水,则转化为Ca型水(图5-7)。

图5-7 西辽河平原地下水化学类型变化

(据李志等,2009)

2.水化学类型由重碳酸型水转变为其他类型水,地下水矿化度增大

主要发生在平原或盆地的中下游以及深层承压含水层开采漏斗区,地下水流场改变,承压含水层水头低于相邻含水层,劣质水越流补给承压含水层。目前在准噶尔盆地局部、柴达木盆地、山西盆地和华北平原及东北平原变化比较明显。

准噶尔盆地沙漠边缘的承压含水层,由于开采地下水使承压含水层水头低于潜水,高矿化度和高硬度潜水的混入承压含水层,20世纪80年代中期以来水化学类型明显变化,由HCO3·SO4-Na水转化为SO4·Cl-Na水。

柴达木盆地冷湖镇在开采地下水时出现了咸水入侵现象,冷湖镇水源地在冷湖北岸冲洪积扇潜水区,开采时动水位11~13m,之后形成了下降漏斗,其半径956~1130m,漏斗已扩展到半咸水、咸水区,引起了咸水倒灌。该水源地水质变咸后于19年在原水源地北又重新开辟新的水源地。经2002年、2003年和2004年在水源地取样分析,一些水井水质已变咸,水化学类型属SO4·Cl·(HCO3)-Ca·Mg水。

格尔木河冲洪积扇戈壁带右翼也出现水质咸化现象,主要原因是该地区地表或浅层普遍存在一层古盐壳,在开采过程中,由于管道漏水等原因将盐壳中的盐分溶滤到含水层中,导致水质咸化;20世纪80年代初该地区地下水位普遍上升,溶滤了古盐壳的盐分,也造成水质咸化;另外,1998、1999年两年格尔木市农牧局为绿化城市于水源地上游营造了60亩防风林带,采用大水漫灌,使包气带盐分溶解并大量下渗而造成矿化度等急剧升高。

临汾盆地20世纪60年代、80年代及2004年水化学对比分析发现,从边山到盆地中心汾河一线,浅层水质序列已经发生明显变化(表5-2),变化的整体趋势是山前冲洪积扇地带HCO3 型水区普遍后移或者消失,取而代之的是HCO3·SO4 型水或者SO4·HCO3型水,SO4·HCO3型水及HCO3·SO4型水的区域分布面积明显变大,中深层水质也有一定程度的改变。

表5-2 临汾盆地代表性剖面浅层水水质序列变化

(据韩颖等,2009)

运城盆地浅层地下水20年来水化学类型相对趋于简化,水质相对变差,矿化度有增高的趋势(图5-8)。在涑水河谷中游东镇—闻喜—水头一线,水质类型由1980年的HCO3—Na、HCO3·SO4—Na、SO4·HCO3—Na、Cl·HCO3—Na、SO4—Na型水,逐渐变为2004年的HCO3、Cl型水,并且范围变大,矿化度增高。在夏县县城附近,HCO3、Cl型水的范围2005年比1980年明显增大,水质相对变差,矿化度增高。在临猗嵋阳一带,HCO3·SO4型水,由1980年的零星分布,逐渐变为片状,水质变差,矿化度增高,在湖积平原区伍姓湖一带,Cl·SO4型水范围2005年与1980年变化明显增大,矿化度增高。

图5-8 运城盆地浅层水水化学变化图

(据韩颖等,2009)

图5-9 运城盆地中深层水水化学变化图

(据韩颖等,2009)

运城盆地中部中深层含水层因为地下水开采导致浅层水进入致使水质变差。从盆地1980年和2005年中深层含水层水化学图5-12和图5-13可以看出,经过20多年的时间,盆地中深层含水层水化学场变化较为明显的地带,主要出现在盆地中部的涑水河冲洪积平原,水化学类型由20世纪80年代的HCO3、HCO3·SO4、HCO3·Cl、SO4·HCO3、SO4·Cl、Cl·SO4 型水演化为2005年的HCO3、HCO3·SO4、SO4·HCO3、SO4·Cl、Cl·HCO3、Cl型水,水化学类型趋于复杂,矿化度有升高之趋势,主要原因是由于地下水强烈开采,地下水流场发生变化及在凿井过程中,使含水层串通、使水质较差的浅层水灌入中深层水中所致。

鲁北平原东部滨海地带的氯化物型水向中西部扩展。在茌平—齐河—禹城—临邑一线、宁津和陵县的东部地区,由重碳酸盐型水变为重碳酸—氯化物型水和重碳酸—硫盐型水。在庆云—阳信一线、滨州市滨城区、利津和沾化交界地带,地下水由重碳酸—硫酸氯化物型水、重碳酸—氯化物型变为氯化物型水。

松嫩平原山前倾斜平原第四系潜水,在20世纪80年代,水化学类型主要是HCO3-Ca·Na水,其次是HCO3·Na水,再次是HCO3-Ca·Mg水。HCO3·SO4 型水只在北部讷河、齐齐哈尔、龙江和林甸县一带有少量分布,目前,泰来县也出现了HCO3·SO4 型水。低平原第四系潜水近20年来地下水水化学类型复杂化,氯化物型水分布面积增大,数量增多,出现了许多新的水化学类型,最典型的是*型水。20世纪80年代,高平原北部潜水水化学类型主要是HCO3型水,局部有HCO3·SO4 型水;HCO3·Cl型水在呼兰河以南地区大片出现、以北零星分布。目前调查发现,在高平原区绥化一带HCO3·SO4(SO4·HCO3)型水及SO4·Cl(Cl·SO4)型水已成片分布。在呼兰河以北地区HCO3·Cl(Cl·HCO3)型水大面积向北扩展。水化学类型变化最大的是呼兰河以北的农业地区,出现了大量与*相关的水化学类型,如 HCO3·NO3(NO3·HCO3)-Ca·Mg 型水、NO3-Ca·Mg型水及NO3·HCO3型水等。

松嫩高平原第四系承压水20世纪80年代,主要水化学类型是HCO3 型水,本次调查发现,在盆地北部呼兰河一带和哈尔滨市,出现了大面积的HCO3-SO4-Ca型水。HCO3-Cl-Ca型水分布面积也比80年代增多。

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com