发布网友 发布时间:2022-04-25 06:00
共1个回答
热心网友 时间:2023-11-01 07:00
对于正数a、b.
A=(a+b)/2,叫做a、b的算术平均数
G=√(ab),叫做a、b的几何平均数
S=√[(a^2+b^2)/2],叫做a、b的平方平均数
H=2/(1/a+1/b)=2ab/(a+b)叫做调和平均数
不等关系:H=<g=<a=<s.其中g=<a是基本的
基本不等式:又称柯西不等式,是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。但从历史的角度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz不等式,因为,正是后两位数学家彼此地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。 柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。 柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。