受体的分类

发布网友 发布时间:2022-04-26 22:00

我来回答

2个回答

热心网友 时间:2023-11-08 04:01

据受体蛋白结构、信息转导过程、效应性质、受体位置等特点,对目前已确定的受体可分为四类:\x0d\x0a\x0d\x0a1.离子通道受体\x0d\x0a\x0d\x0a(配体门控通道受体)初级药师药理学辅导精华这一家族是直接连接有离子通道的膜受体,存在快反应细胞膜上,均由数个亚基组成,每个亚基的一部分共同组成离子通道,起着快速的神经传导作用。当受体激活后,离子通道开放,促进细胞内、外离子跨膜流动,引起细胞膜去极化或超极化,产生兴奋或抑制效应。N胆碱受体、兴奋性氨基酸受体、γ-氨基丁酸受体等属于这类受体。\x0d\x0a\x0d\x0a2.G蛋白偶联受体\x0d\x0a\x0d\x0a这一家族的受体是通过G蛋白连接细胞内效应系统的膜受体。肾上腺素、多巴胺、5-羟色胺、M胆碱、前列腺素及一些多肽类等的受体都属于这类受体。它们通过与不同膜上G蛋白偶联,使配体的信号通过第二信使cAMP、磷酸肌醇、二酰基甘油及Ca2+传至效应器,从而产生效应。这类G蛋白偶联受体的结构具有共同的跨膜结构,在受体与激动剂结合后,只有经过G蛋白的转导,才能将信号传递至效应器。\x0d\x0a\x0d\x0aG蛋白是一类与跨膜传递有关的膜蛋白,已经发现存在许多种,无论结构还是功能都有许多共性,组成一个大家族。根据G蛋白的功能,大致分为Gs(兴奋性G蛋白)、Gi(抑制性G蛋白)、Gt(在视杆及视锥细胞上激活cGMP依赖的磷酸二酯酶)、Gp(激活磷脂酶C)、Gk(刺\x0d\x0a\x0d\x0a激K+通道开放)、GCa(介导内质网Ca2+释放)蛋白等。G蛋白是细胞外受体与细胞内效应分\x0d\x0a\x0d\x0a子的偶联体,其功能有:①调节腺苷酸环化酶(AC)活性,通过cAMP实现信号转导;②介导\x0d\x0a\x0d\x0a肌醇磷脂的降解,生成1,4,5-三磷酸肌醇(IP3)和二酰基甘油(DG),IP3和DG是重要的\x0d\x0a\x0d\x0a第二信使,介导多种受体的信号转导;中华医学学习网|收集整理③调节离子通道,影响ca2+和K+等离子的跨膜流动。\x0d\x0a\x0d\x0a3.具有酪氨酸激酶活性的受体\x0d\x0a\x0d\x0a这一家族是结合细胞内蛋白激酶,一般为酪氨酸激酶的膜受体。当激动剂与细胞膜外的识别部位结合后;细胞内的激酶被激活,在特定部位发生自身磷酸化,再将磷酸根转移到其效应器上,使效应器蛋白的酪氨酸残基磷酸化,激活胞内蛋白激酶,引起胞内信息传递。属于具有酪氨酸激酶活性的受体有胰岛素、胰岛素样生长因子、表皮生长因子、成纤维生长因子、血小板源性生长因子及某些淋巴因子的受体。\x0d\x0a\x0d\x0a4.调节基因表达的受体\x0d\x0a\x0d\x0a肾上腺皮质激素、雌激素、孕激素、甲状腺素都是非极性分子,可以自由透过细胞膜的脂质双分子层,与胞内的受体发生结合,传递信息。所有甾体激素受体都属于一个有共同结构和功能特点的大家族。它们都有一个约70个氨基酸残基组成的DNA结合部位。热休克蛋白(Hsp90)一方面有助于受体与激素结合,另一方面遮蔽受体的DNA结合部位,使受体与DNA只能疏松结合。因此,当不存在激素时,受体易从核上解离;受体与激素结合后,即释放出Hsp90,显露出DNA结合部位,与DNA紧密结合并调节其表达。甾体激素受体触发的细胞效应很慢,需若干小时。\x0d\x0a\x0d\x0a各种受体都有特定的分布部位和特殊功能,有些受体具有亚型。有些细胞具有多种受体,如心肌细胞上有M胆碱受体、β1和β2肾上腺素受体、H2受体等。有时一个拮抗剂可阻断多种受体,如氯丙嗪除可阻断多巴胺受体、α肾上腺素受体外,对胆碱受体、组胺受体和5-羟色胺受体也有弱的阻断作用。受体除分布于突触后膜外,有些也分布于突触前膜。

热心网友 时间:2023-11-08 04:02

受体的分类:
大多数药物在体内都是和特异性受体相互作用,改变细胞的生理生化功能而产生效应。已经确定的受体有30多种,根据受体存在的标准,受体可大致分为三类:
1.细胞膜受体:位于靶细胞膜上,如胆碱受体、肾上腺素受体、多巴胺受体、阿片受体等。
2.胞浆受体:位于靶细胞的胞浆内,如肾上腺皮质激素受体、性激素受体。
3.胞核受体:位于靶细胞的细胞核内,如甲状腺素受体。
另外也可根据受体的蛋白结构、信息转导过程、效应性质、受体位置等特点将受体分为四类:
1.含离子通道的受体(离子带受体):如N-型乙酰胆碱受体含钠离子通道。
2.G蛋白偶联受体:M-乙酰胆碱受体、肾上腺素受体等。
3.具有酪氨酸激酶活性的受体:如胰岛素受体。
4.调节基因表达的受体(核受体):如甾体激素受体、甲状腺激素受体等。
有些受体具有亚型,各种受体都有特定的分布部位核特定的功能,有些细胞也有多种受体。

热心网友 时间:2023-11-08 04:01

据受体蛋白结构、信息转导过程、效应性质、受体位置等特点,对目前已确定的受体可分为四类:\x0d\x0a\x0d\x0a1.离子通道受体\x0d\x0a\x0d\x0a(配体门控通道受体)初级药师药理学辅导精华这一家族是直接连接有离子通道的膜受体,存在快反应细胞膜上,均由数个亚基组成,每个亚基的一部分共同组成离子通道,起着快速的神经传导作用。当受体激活后,离子通道开放,促进细胞内、外离子跨膜流动,引起细胞膜去极化或超极化,产生兴奋或抑制效应。N胆碱受体、兴奋性氨基酸受体、γ-氨基丁酸受体等属于这类受体。\x0d\x0a\x0d\x0a2.G蛋白偶联受体\x0d\x0a\x0d\x0a这一家族的受体是通过G蛋白连接细胞内效应系统的膜受体。肾上腺素、多巴胺、5-羟色胺、M胆碱、前列腺素及一些多肽类等的受体都属于这类受体。它们通过与不同膜上G蛋白偶联,使配体的信号通过第二信使cAMP、磷酸肌醇、二酰基甘油及Ca2+传至效应器,从而产生效应。这类G蛋白偶联受体的结构具有共同的跨膜结构,在受体与激动剂结合后,只有经过G蛋白的转导,才能将信号传递至效应器。\x0d\x0a\x0d\x0aG蛋白是一类与跨膜传递有关的膜蛋白,已经发现存在许多种,无论结构还是功能都有许多共性,组成一个大家族。根据G蛋白的功能,大致分为Gs(兴奋性G蛋白)、Gi(抑制性G蛋白)、Gt(在视杆及视锥细胞上激活cGMP依赖的磷酸二酯酶)、Gp(激活磷脂酶C)、Gk(刺\x0d\x0a\x0d\x0a激K+通道开放)、GCa(介导内质网Ca2+释放)蛋白等。G蛋白是细胞外受体与细胞内效应分\x0d\x0a\x0d\x0a子的偶联体,其功能有:①调节腺苷酸环化酶(AC)活性,通过cAMP实现信号转导;②介导\x0d\x0a\x0d\x0a肌醇磷脂的降解,生成1,4,5-三磷酸肌醇(IP3)和二酰基甘油(DG),IP3和DG是重要的\x0d\x0a\x0d\x0a第二信使,介导多种受体的信号转导;中华医学学习网|收集整理③调节离子通道,影响ca2+和K+等离子的跨膜流动。\x0d\x0a\x0d\x0a3.具有酪氨酸激酶活性的受体\x0d\x0a\x0d\x0a这一家族是结合细胞内蛋白激酶,一般为酪氨酸激酶的膜受体。当激动剂与细胞膜外的识别部位结合后;细胞内的激酶被激活,在特定部位发生自身磷酸化,再将磷酸根转移到其效应器上,使效应器蛋白的酪氨酸残基磷酸化,激活胞内蛋白激酶,引起胞内信息传递。属于具有酪氨酸激酶活性的受体有胰岛素、胰岛素样生长因子、表皮生长因子、成纤维生长因子、血小板源性生长因子及某些淋巴因子的受体。\x0d\x0a\x0d\x0a4.调节基因表达的受体\x0d\x0a\x0d\x0a肾上腺皮质激素、雌激素、孕激素、甲状腺素都是非极性分子,可以自由透过细胞膜的脂质双分子层,与胞内的受体发生结合,传递信息。所有甾体激素受体都属于一个有共同结构和功能特点的大家族。它们都有一个约70个氨基酸残基组成的DNA结合部位。热休克蛋白(Hsp90)一方面有助于受体与激素结合,另一方面遮蔽受体的DNA结合部位,使受体与DNA只能疏松结合。因此,当不存在激素时,受体易从核上解离;受体与激素结合后,即释放出Hsp90,显露出DNA结合部位,与DNA紧密结合并调节其表达。甾体激素受体触发的细胞效应很慢,需若干小时。\x0d\x0a\x0d\x0a各种受体都有特定的分布部位和特殊功能,有些受体具有亚型。有些细胞具有多种受体,如心肌细胞上有M胆碱受体、β1和β2肾上腺素受体、H2受体等。有时一个拮抗剂可阻断多种受体,如氯丙嗪除可阻断多巴胺受体、α肾上腺素受体外,对胆碱受体、组胺受体和5-羟色胺受体也有弱的阻断作用。受体除分布于突触后膜外,有些也分布于突触前膜。

热心网友 时间:2023-11-08 04:02

受体的分类:
大多数药物在体内都是和特异性受体相互作用,改变细胞的生理生化功能而产生效应。已经确定的受体有30多种,根据受体存在的标准,受体可大致分为三类:
1.细胞膜受体:位于靶细胞膜上,如胆碱受体、肾上腺素受体、多巴胺受体、阿片受体等。
2.胞浆受体:位于靶细胞的胞浆内,如肾上腺皮质激素受体、性激素受体。
3.胞核受体:位于靶细胞的细胞核内,如甲状腺素受体。
另外也可根据受体的蛋白结构、信息转导过程、效应性质、受体位置等特点将受体分为四类:
1.含离子通道的受体(离子带受体):如N-型乙酰胆碱受体含钠离子通道。
2.G蛋白偶联受体:M-乙酰胆碱受体、肾上腺素受体等。
3.具有酪氨酸激酶活性的受体:如胰岛素受体。
4.调节基因表达的受体(核受体):如甾体激素受体、甲状腺激素受体等。
有些受体具有亚型,各种受体都有特定的分布部位核特定的功能,有些细胞也有多种受体。

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com