发布网友 发布时间:2022-04-27 02:06
共1个回答
热心网友 时间:2022-06-22 04:53
因数
一整数被另一整数整除,后者即是前者的因数,如1,2,4都为8的因数
A除法里,如果被除数除以除数,所得的商都是自然数而没有余数,就说被除数是除数的倍数,除数是被除数的因数.
B我们将一个合数分成几个质数相乘的形式,这样的几个质数叫做这个合数的质因数。
C约数和因数的区别有三点:1数域不同。约数只能是自然数,而因数可以是任何数。2关系不同。约数是对两个自然数的整除关系而言,只要两个数是自然数,就能确定它们之间是否存在约数关系,如:40÷5=8,40能被5整除,5就是40的约数,12÷10=1.2,12不能被10整除,10不是12的约数。因数是两个或两个以上的数对它们的乘积关系而言的。如:8×0.2=1.6,8和0.2都是积1.6的因数,离开乘积算式就没有因数了。3大小关系不同。当数a是数b的约数时,a不能大于b,当a是b的因数时,a可以大于b,也可以小于b。例如,5是60的约数,5<60,8是4.8的因数,8>4.8
倍数
①一个数能够被另一数整除,这个数就是另一数的倍数。如15能够被3或5整除,因此15是3的倍数,也是5的倍数。
②一个数除以另一数所得的商。如a÷b=c,就是说a是b的c倍,c是倍数。
完美数
●稀少而有趣的完美数
已知自然数a和b,如果b能够整除a,就说b是a的一个因数,也称为约数。显然,任何自然数a,总有因数1和a。我们把小于a的因数叫做a的真因数。
例如6,12,14这三个数的所有真因数:
6:1,2,3;1+2+3=66=6
12:1,2,3,4,6;1+2+3+4+6=1616>12
14:1,2,7;1+2+7=1010<14
像12这样小于它的真因数之和的叫做亏数(不足数);大于真因数之和的(如14)叫做盈数或过剩数;恰好相等的(如6)叫做完全数,也称为完美数。
古希腊人非常重视完全数。大约在公元100年,尼可马修斯写了第一本专门研究数论的书《算术入门》,其中写道:“也许是这样:正如美的、卓越的东西是罕有的,是容易计数的,而丑的、坏的东西却滋蔓不已;所以盈数和亏数非常之多,而且紊乱无章,它们的发现也毫无系统。但是完美数则易于计数,而且又顺理成章……,它们具有一致的特性:尾数都是6或8,而且永远是偶数。”
现在数学家已发现,完全数非常稀少,至今人们只发现29个,而且都是偶完美数。前5个完美数分别是:6,28,496,8128,33550336。
经过不少科学家的研究,现在已经发现,假如数(2^n-1)是素数,那么数(2^(n-1)×(2^(n-1)))就一定是完全数,其中的n也同样是素数。为此,数学家就用英文prime(素数)的第一个字母p代替n,还把形如(2^p-1)的素数叫“默森尼数”。但是对于下面两个问题:“偶完全数的个数是不是有限的?”“有没有奇完全数?”数学家到现在还没有解决。
完美数有许多有趣的性质,例如:
1.它们都能写成连续自然数之和:
6=1+2+3
28=1+2+3+4+5+6+7
8128=1+2+3+4……+127
2.它们的全部因数的倒数之和都是2。
1/1+1/2+1/3+1/6=2,
1/1+1/2+1/4+1/7+1/14+1/28=2,
1/1+1/2+1/4+1/8+1/16+1/31+1/62+1/124+1/248+1/496=2.
●锃亮的更新:目前共发现45个完美数。