发布网友 发布时间:2022-04-22 02:56
共2个回答
热心网友 时间:2023-10-05 11:53
证明:设G是n阶无向简单图,图G中各个顶点的度数最多为n-1,因此图G中各个顶点的度数只可能是0,1,2,…,n-1。但当图G中有一个顶点的度数为n-1时,表明这个顶点与图G中的其他n-1个顶点都有边关联,因此图中其他n-1个顶点的度数至少为1。
在这种情况下,图G中各点的度数只可能是1,2,…,n-1,共有n-1种,而图G仅有n个顶点,所以由鸽洞原理可知.图G中必有两个顶点的度数是相同的。
当图G中没有一个顶点的度数为n-1时,则图中各顶点的度数只可能是0,1,…,n-2,共有n-1种,同样由鸽洞原理可知,图G中必有两个顶点的度数相同。
相关信息:
若定义域和值域都为有限集,其研究研究的主要理论依据为鸽洞原理(对一个非一对一函数充分性的判别)。
可列集(enumerable):与自然数集等势的集合,即可以与自然数集进行一一映射的集合(如自然数集、 有理数集、 代数数集等,但不包含实数集、复数集、直线点集、 平面点集等)。
热心网友 时间:2023-10-05 11:53
n个顶点 度数为d(xi)(1≤i≤n)
则d(xi)可以取0,1,2...,n-1
可以取n个不同的值
若存在d(xi)=0 则不可能存在d(xi)=n
n个d(xi)取n-1个不同的值
由鸽笼原理
必有d(xm)=d(xn)
即必有度数相同的顶点
若存在d(xi)=n 则不可能存在d(xi)=0
n个d(xi)取n-1个不同的值
由鸽笼原理
必有d(xm)=d(xn)
即必有度数相同的顶点