发布网友 发布时间:2024-10-24 02:43
共2个回答
热心网友 时间:2024-11-21 21:29
解:
(1)
x取任意实数,函数表达式恒有意义,函数定义域为R,关于原点对称。
f(-x)=(-x)²+|(-x)-a|-1
=x²+|x+a|-1
分类讨论:
a=0时,f(x)=x²+|x|-1,f(-x)=x²+|x|-1=f(x)
函数是偶函数
a≠0时,f(x)=x²+|x+a|-1,f(-x)=x²+|x-a|-1
函数是非奇非偶函数。
(2)
a=2时,f(x)=x²+|x-2|-1
x≥2时,
f(x)=x²+x-2-1=x²+x-3=(x+½)²-13/4
对称轴x=-½,区间[2,+∞)在对称轴右侧,函数单调递增
f(x)≥f(2)=2²+2-3=3
x<2时,
f(x)=x²+2-x-1=x²-x+1=(x-½)²+¾
对称轴x=½
x=½时,函数有最小值f(x)min=f(½)=¾<3
综上,得:函数f(x)的最小值为¾
热心网友 时间:2024-11-21 21:29